Tous les boutons doivent se retrouver poussés ou relevés : je n'y suis jamais arrivé ! Et vous ?

Auteur : T. McNaught (pas de page web)

¤

Thomas Cabaret propose une solution que je n'ai pas pris le temps de traduire.

Just for the fun here is a todd game solution :

1  OOPOOOOOO -> OOOOOOOOX
2  OPOPOOOOO -> OOOOOOOXO
3  POPOPOOOO -> OOOOOOXOO
4  OPOPOPOOO -> OOOOOXOOO
5  OOPOPOPOO -> OOOOXOOOO

How to use it :

1) reduce the matrice to all ON buttons on the last (right) column (very easy to do).
2) decompose what you get in this remaining column as sum of right members of my formulas.
    ie : if you have XOOXOXOOO so it is -1-4+4   (- for sym).
3) make the corresponding xor sum of left members :
    ie here : OOOOOOPOO+OOOPOPOPO+OPOPOPOOO = OPOOOOPPO
4) on the first(left) column clic where this result indicates (P as push).
5) WITHOUT NOW TOUCHING THE FIRST COLUMN fold ON buttons to the right. (you clic only on the 2nd col, next only on the 3rd,,, etc to the right).
6) when you reach the last column all will disappear by magic.

Ps : As you can see this method is "complete" (because it covers all the states of the remaining column), so it means that any position is reachable.

Thomas Cabaret